Stability of Dynamic Systems on the Time Scales
نویسندگان
چکیده
The paper dwells on the problems of stability of dynamical systems on a time scale. The paper is divided into the following sections: local existence and uniqueness, dynamic inequalities, existence of extremal solutions, comparison results, linear variation of parameters, nonlinear variation of parameters, global existence and stability, comparison theorems, stability criteria, etc.
منابع مشابه
Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales
In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.
متن کاملHyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
متن کاملFirst order linear fuzzy dynamic equations on time scales
In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.
متن کاملStability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method
In the present study, some perturbation methods are applied to Duffing equations having a displacement time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency analysis and nonlinear frequency is formulated as a function of all the ...
متن کاملStability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP
Efficiency of numerical methods is an important problem in dynamic nonlinear analyses. It is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable meth...
متن کاملA Novel Approach to Trace Time-Domain Trajectories of Power Systems in Multiple Time Scales Based Flatness
This paper works on the concept of flatness and its practical application for the design of an optimal transient controller in a synchronous machine. The feedback linearization scheme of interest requires the generation of a flat output from which the feedback control law can easily be designed. Thus the computation of the flat output for reduced order model of the synchronous machine with simp...
متن کامل